MODULO MET-F

CARTE E BOLLETTINI PER LA METEOROLOGIA AERONAUTICA

COMPETENZE: Saper ricavare dalle carte e dai bollettini meteorologici i dati utili alla pianificazione del volo e valutare i fenomeni pericolosi per il volo.

CONOSCENZE: Carte e bollettini meteorologici.

ABILITA': Saper interpretare bollettini e carte meteorologiche.

INTRODUZIONE

La meteorologia si occupa dei fenomeni fisici che influiscono sul tempo atmosferico mediante:

- l'osservazione del vento, dei fronti e delle nubi;
- la misurazione della temperatura dell'aria, dell'umidità atmosferica, della pressione atmosferica e della velocità e direzione del vento.

I meteorologi utilizzano diversi strumenti:

- radiometri e scatterometri posizionati su satelliti che misurano l'energia elettromagnetica reirradiata dal pianeta verso lo spazio.
- palloni sonda che consentono di ottenere profili verticali di pressione, temperatura, umidità e vento.
- radar meteorologici, posizionati a terra o su satellite, che consentono di sondare la struttura delle nubi.
- barometri, termometri, igrometri, pluviometri, anemometri e palloni sonda che consentono rispettivamente di ottenere la pressione atmosferica, la temperatura, l'umidità, la quantità di pioggia, la forza e la direzione dei venti, l'osservazione della parte alta dell'atmosfera.
- · radiosondaggi.
- boe galleggianti e navi meteorologiche che consentono l'osservazione delle condizioni meteorologiche in mare.
- satelliti meteorologici (geostazionari o polari) che inviano al suolo mappe della temperatura e immagini del movimento delle nubi.

DEFINIZIONI (CONOSCENZE)

1. Carte meteorologiche

CARTE DEI VENTI E DELLE TEMPERATURE IN QUOTA

Esse forniscono la direzione e l'intensità del vento nonché i valori di temperature a vari FL:

FL 050 - 850 HPa (Fig. 1).

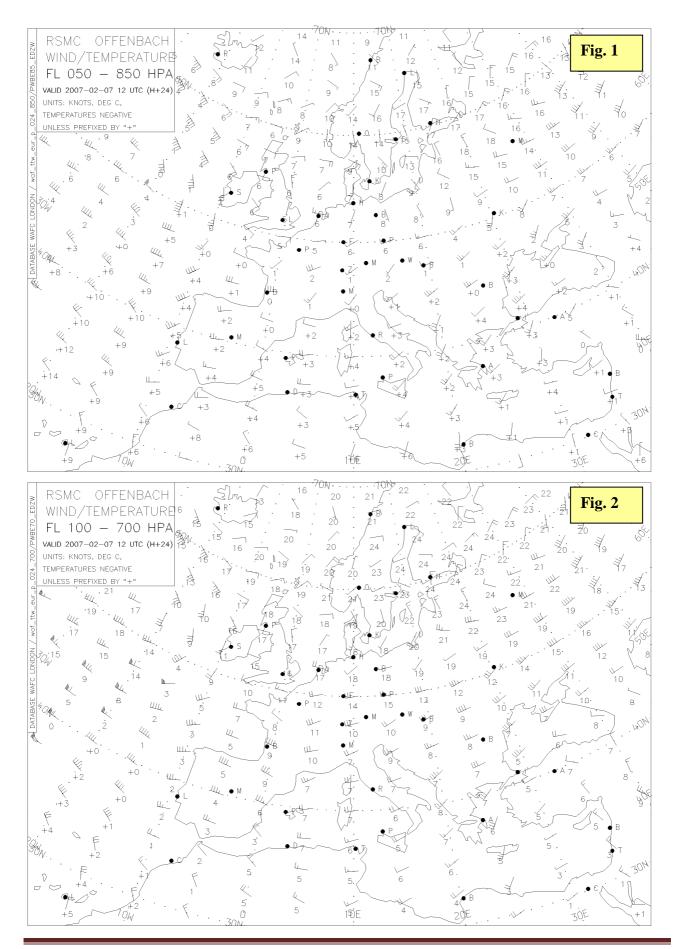
FL 100 - 700 HPa (Fig. 2).

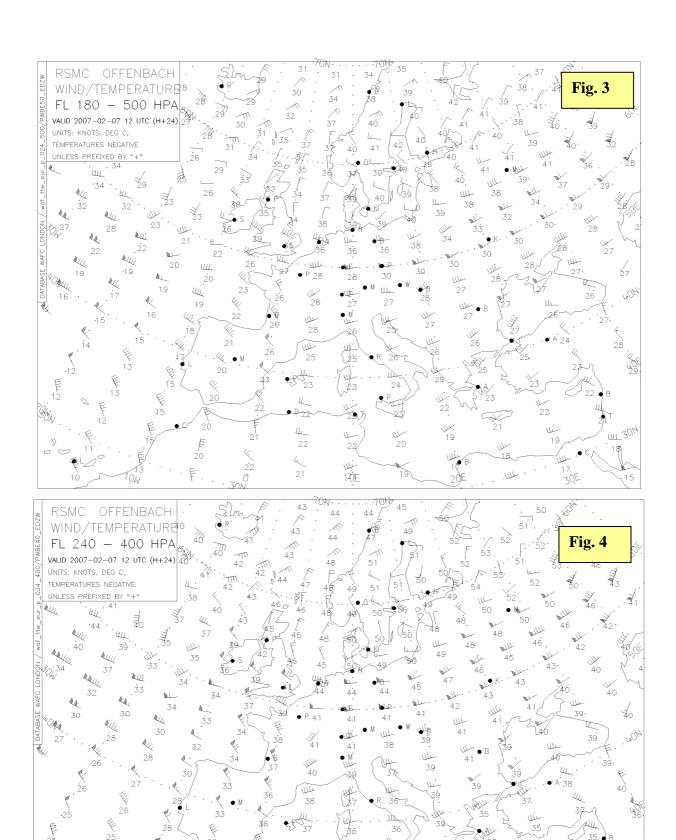
FL 180 - 500 HPa (Fig. 3).

FL 240 - 400 HPa (Fig. 4).

FL 300 - 300 HPa (Fig. 5).

FL 340 - 250 HPa (Fig. 6).


FL 390 - 200 HPa (Fig.7).


Rappresentazione del vento sulle carte:

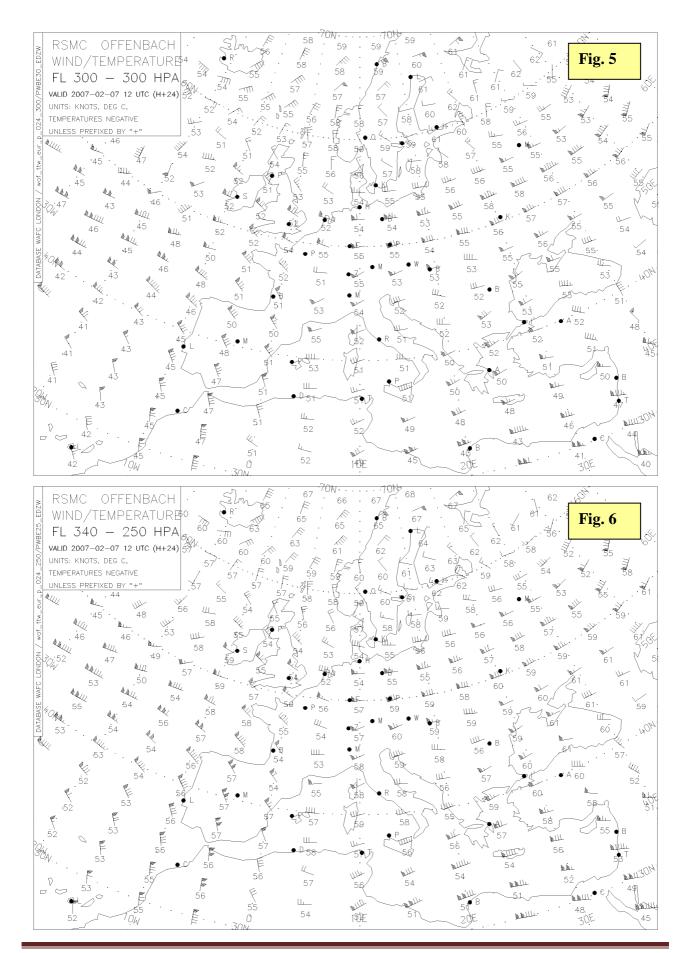
- Direzione: trattino lungo che proviene dalla direzione da cui spira il vento e termina nel punto di osservazione
- Velocità: trattino trasversale ogni 10^k, mezzo trattino trasversale ogni 5^k, un triangolo ogni 50^k.

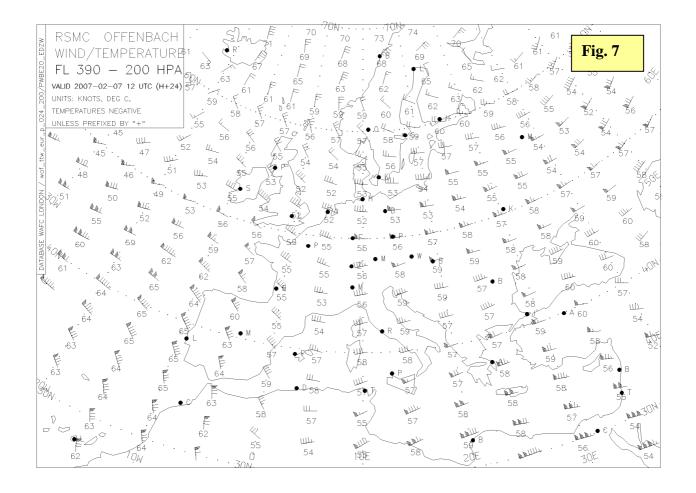
 $w/v = 270^{\circ}/65^{k}$

Prof.ssa C. Agizza Pagina 4

10E

Ц 37 11


11_


35 4 35

||*33

36 7

32

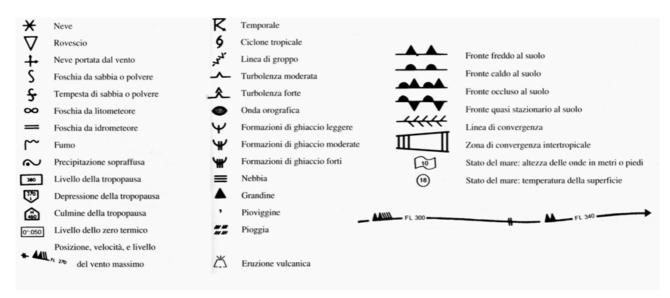
CARTE DEL TEMPO SIGNIFICATIVO o Significant Weather (SW)

Le **carte del tempo significativo** servono ai piloti per valutare i fenomeni pericolosi per il volo. Tali carte descrivono le condizioni meteo in quota o ai bassi livelli.

Per la valutazione dettagliata delle condizioni al suolo si ricorre ai bollettini TAF (saranno descritti successivamente).

Le carte vengono emesse ad intervalli di 6 ore:

Previsione			
vt 00h	vt 06h	vt 012h	vt 018h
Visualizza	Visualizza	Visualizza	Visualizza


Esse rappresentano la situazione meteorologica espressa in forma pittorica dell'area interessata.

Tali carte sono disponibili in tre formati:

- > SWL (Significant Weather Low Level) : dal suolo a FL100 (Fig.8). In queste carte:
 - > le quote sono in centinaia di piedi o metri sul livello medio del mare.
 - > si specifica il tipo di nubi.
 - > si riporta la visibilità.
- > SWM (Significant Weather Medium Level) : dal FL100 a FL250. In queste carte:
 - > le quote sono in FL
 - > non viene specificato il tipo di nubi se non di tipo CB
- > SWH (Significant Weather High Level) : dal FL 250 in su (Fig.9).

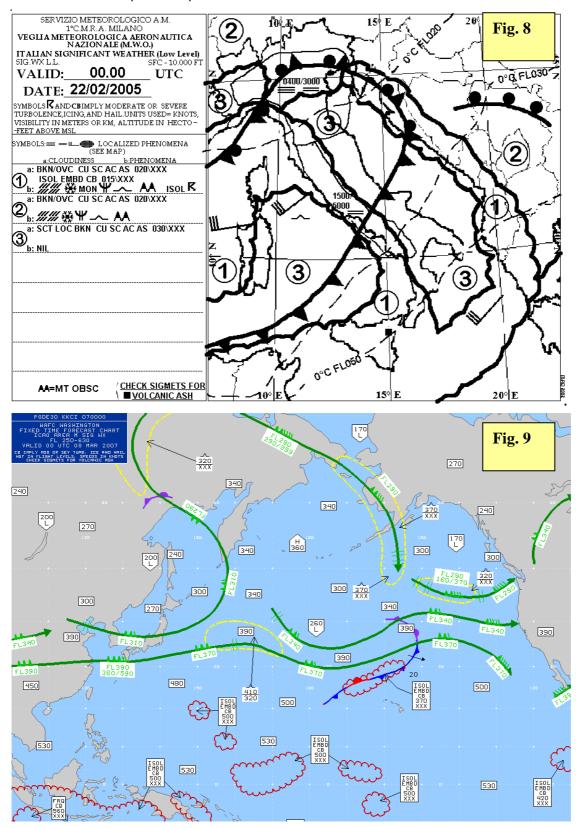
Gli elementi che compongono le mappe del tempo significativo sono:

• I fenomeni metereologici che sono rappresentati con i seguenti simboli:

• I tipi di nubi sono, invece, rappresentate con i seguenti simboli.

Nubi Alte Oltre 6000 mt	Cirri – Ci Cirrostrati – Cs Cirrocumuli – Cc
Nubi medie 2000-6000 mt	Altostrati – As Altocumuli – Ac
Nubi basse	Nembostrati – Ns Stratocumuli – Sc Strati – St
Nubi a sviluppo verticale	Cumuli – Cu Cumulonembi - Cb

Inoltre, per quanto riguarda la natura, le nubi possono essere:


LY	'R	stratificate	FEW	poche, da 1 a 2 ottavi
CI	В	cumulonembi	SCT	sparse, da 3 a 4 ottavi
	ISOL	cumulonembi isolati	BKN	frammentate, da 5 a 7 ottavi
СВ	OCNL	cumulonembi occasionali	OVC	coperto, 8 ottavi
СВ	FRQ	cumulonembi frequenti	SKC	sky clear - cielo sereno
	EMBD	cumulonembi affogati		

L'estensione verticale viene rappresentata con una frazione:

Notazioni particolari:

- xxx se uno dei valori della frazione sopra indicata va oltre quelli previsti dalla carta;
- per le mappe SWL l'altezza viene espressa in centinaia di piedi dal livello del mare;
- SFC è il simbolo che indica il livello del suolo;
- i centri di alta e bassa pressione sono rispettivamente rappresentati con i simboli L (low) ed H (hi) e la posizione è indicata con una X;

- lo spostamento dei centri di alta e bassa pressione è indicato con delle frecce orientate nella direzione del movimento, accompagnate dalla velocità espressa in nodi;
- la visibilità è riportata quando è minore di 5 km.

2. Bollettini meteorologici

METAR (METeorological Aerodrome Report)

E' emesso in ambito aeroportuale e può essere emesso ora o ogni 30 minuti.

LIPQ 172030Z 04017G25 6000 -RA FEW012 SCT025 BKN080 20/15 1005 TEMPO 2123 BKN 060

IDENTIFICATIVO Xxxx GGhhmmZ Codice Giorno ICAO ora zulu	VENTO IN SUPERFICIE DDDvvGmm Dir vel raffica	VISIBILITA' VVVV In metri se 9999 + 10Km
LIPQ= Ronchi LIPZ= Venezia LIPB= Bolzano LIPE= Bologna LOWS= Salisburgo LOWK= Klaghenfurt LJLJ= Lubiana LJPZ= Portorose EDDM= Monaco	Se dir Variabile DDD V DDD	Se < 1500 m R e pista

LIPQ 172030Z 04017G25 6000 -RA FEW012 SCT025 BKN080 20/15 1005 TEMPO 2123 BKN 060

<u>FENOMENI</u>	<u>NUBI</u>	<u>TEMPERATURE</u>	<u>PRESSIONE</u>
DZ – pio∨iggine RA – pioggia	OOOhhh	TT/dd	QPPPP
SN – ne∨e	Octas altitudine	Temp/Rugiada	hectoPascal
SG – ne∨e in granuli PE – ghiaccio in grani		. •	
IC – ice crystals	SKC = 0 ottavi		
GR - grandine>5mm	FEW = 1-2		
GS – grandine<5mm	SCT = 3-4		Q = QNH
FG – nebbia	BKN = $5-7$	Se T o d< 0	
BR – foschia SQ – linea di groppo	OVC = 8	MTT o Mad	Pressione riferita
FC – funnel cloud o		·	Al livello del
Water spout	Altitudine in	Nella colonna della	mare
TS – temporale xx	Unità di 100 Piedi	temperatura M indica un	
SH - rovescio xx	(30m)	valore negativo.	i
FZ – che ghiaccia xx	()		
HVY – forte xx	CB e TCU = unici ti	ipi specificati se presenti - CA	VOK
FBL - leggero xx			

CAVOK: Ceiling And Visibility OK

Sostituisce la visibilità, i fenomeni e le nubi se la visibilità è di 10 km o più, non ci sono cumulonembi e nubi al disotto di 5000ft e non è previsto nessun fenomeno atmosferico.

NSC = nil significant cloud - Quando non è CAVOK e non è SKC

INFO SUPPLEMENTARI

•PRESENZA DI WIND SHEAR = WS PREVISIONI DI TENDENZA

Validità di 2 ore dopo l'osservazione

BECMG – sta diventando

TEMPO – temporaneamente

PROB – probabilità del xx (%)

NOSIG – senza variazioni

NSW – no significant weather

AT – alle ore hhmm

FM - dalle ore hhmm

TL – fino alle ore hhmm

BECMG - hhHH dalle alle (norm 2h) **TEMPO** – hhHH dalle alle (durata <1h)

PROB – solo 30 o 40%

TAF(Terminal Aerodrome Forecast)

E' una previsione d'aeroporto regolare, basato su previsioni, fatto ogni 3 ore con validità 9 ore (TAF 9H) o ogni 6 ore con validità 18 ore o 24 ore (TAF 18H e 24H).

LIRA 051400Z 051524 28012KT 9999 SCT018 BECMG 1617 FEW018 SCT020 BKN070 TEMPO 1624 17010G20KT 5000 TSRA FEW018CB

IDENTIFICATIVO	PERIODO	<u>VENTO IN</u>	<u>VISIBILITA'</u>
Xxxx GGhhmmZ	GGHHhh	SUPERFICIE	VVVV
Codice Giorno	Giorno dalle alle	DDDvvGmm	In metri
ICAO ora zulu		Dir vel raffica	se 9999
			+ 10Km
LIPQ= Ronchi			
LIPZ= Venezia		Se dir	
LIPB= Bolzano		Variabile	Se < 1500 m
LIPE= Bologna		$ ext{DDD}\mathbf{V}$ DDD	${f R}$ e pista
LOWS= Salisburgo		עטע ז טעט	1 e pista
LOWK= Klaghenfurt			
LJLJ= Lubiana			
LJPZ= Portorose			
EDDM= Monaco			

LIRA 051400Z 051524 28012KT 9999 SCT018 BECMG 1617 FEW018 SCT020 BKN070 TEMPO 1624 17010G20KT 5000 TSRA FEW018CB

FENOMENI

DZ – pio∨iggine RA - pioggia

SN - ne∨e

SG – ne∨e in granuli

PE – ghiaccio in grani

IC - ice crystals

GR – grandine>5mm

GS – grandine<5mm

FG - nebbia

BR - foschia

SQ – linea di groppo

FC - funnel cloud o Water spout

TS - temporale xx

SH – rovescio xx

FZ – che ghiaccia xx

HVY – forte xx

FBL – leggero xx

NUBI

OOOhhh

Octas altitudine

SKC = 0 ottavi

FEW = 1-2

SCT = 3-4

BKN = 5-7

OVC = 8

Altitudine in Unità di 100 Piedi

(30m)

CB e TCU = unici tipi specificati se presenti - ¡GAVOK

LIRA 051400Z 051524 28012KT 9999 SCT018 BECMG 1617 FEW018 SCT020 BKN070 TEMPO 1624 17010G20KT **5000 TSRA FEW018CB**

Variazioni Significative delle condizioni previste

BECMG – sta diventando

TEMPO – temporaneamente

PROB – probabilità del xx (%)

NOSIG – senza variazioni

NSW – no significant weather

AT – alle ore hhmm

FM – dalle ore hhmm

TL – fino alle ore hhmm

BECMG - hhHH dalle alle (norm 2h)

TEMPO – hhHH dalle alle (durata <1h)

PROB – solo 30 o 40%

SPECI(Aviation Selected SPECIal Weather Report)

E' un messaggio di osservazione aeronautico aperiodico che viene emesso quando le condizioni meteorologiche cambiano in modo significativo tra due osservazioni regolari. Il codice è come quello del Metar.

AIREP

E' un modulo nel quale gli equipaggi degli aeromobili riportano le seguenti informazioni:

Posizione: coordinate geografiche, rotta, ora e FL.

• Informazioni meteorologica: temperatura, vento medio, vento istantaneo, tempo presente, strati nuvolosi ed altri fenomeni di rilievo.

AIRMET (Airmen's Meteorological Information)

E' un messaggio emesso per fenomeni pericolosi per velivoli dalle limitate capacità che volano a bassa quota, previsti od osservati sotto il FL 100 (o sotto FL 150 nelle aree montagnose) ed ha una validità di sei ore. Può contenere informazioni sulla:

- velocità del vento in superficie
- copertura delle montagne con nubi
- cumuli torreggianti, frequenti, occasionali
- fenomeni moderati di turbolenza
- formazione di ghiaccio
- onde orografiche
- visibilità al suolo se inferiore ai 5000 metri e fenomeni del tempo che limitano la visibilità (pioggia, neve, pioviggine, grandine, foschia e nebbia).

SIGMET (SIGnificant METeorologic information)

Il SIGMET è un messaggio di informazioni meteorologiche che riguardano fenomeni meteorologici, osservati e/o previsti, di intensità forte all'interno delle FIR - Flight Information Region. Un messaggio SIGMET vale per 4 ore da quando viene emesso. Interessa i livelli di volo subsonici. I fenomeni segnalati nel SIGMET sono: ghiaccio, turbolenza, nubi temporalesche, cicloni e nubi di cenere vulcanica.

Il linguaggio usato nei SIGMET è il linguaggio abbreviato e chiaro.

SIGMET SST

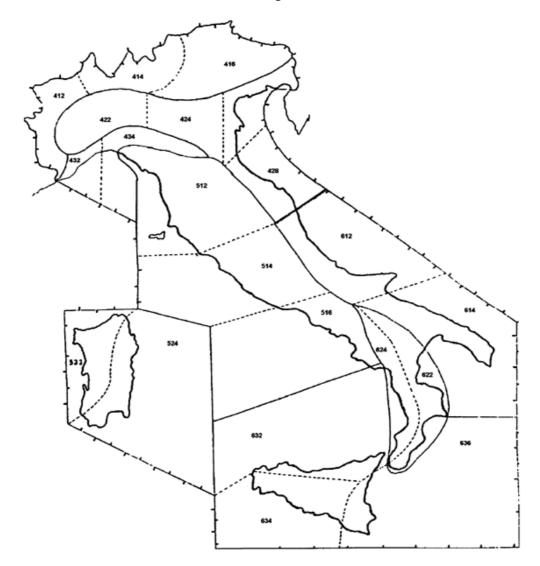
E' simile al SIGMET ma riguarda i livelli di volo di accelerazione transonico e volo supersonici.

MET REPORT

E' un messaggio non codificato di osservazione meteorologica interno al circuito aeroportuale.

PREVISIONI ITALIA

Fornisce le previsioni meteorologiche generali in tutta Italia per il giorno successivo.


PREREG

E' un messaggio che fornisce, per le zone considerate, le previsioni oggettive codificate di:

- Venti e Temperature alle varie quote
- Scie di Condensazione

- Ghiaccio
- Turbolenza
- Cirri
- Zero Termico

Le informazioni contenute nel messaggio fanno riferimento, per una corretta lettura, ad Aree di Competenza. Infatti, l'area Meteorologica Nazionale di riferimento, delimitata dai confini FIR, è suddivisa in tre grandi aree codificate con i numeri 400, 500 e 600. A loro volta queste grandi aree sono suddivise in Zone Intermedie ed in Regioni di Previsione.

VENTI E TEMPERATURE IN QUOTA

VT=DATA + PERIODO DI VALIDITA'

ZZZ= numero identificazione area di previsione (zona di Padova 426)

HHH= altitudine (ettometri, Es. 005=500 metri)

DD= direzione del vento (decine di gradi)

FFF= velocità del vento (nodi)

XX= segno temperatura (MS = negativa, PS= positiva)

TT= valore assoluto temperatura (gradi celsius)

Il FOLDER a disposizione del Comandante del velivolo un'ora prima della partenza contiene:

- METAR
- Le previsioni d'aeroporto: TAF e SIGMET.
- Carte dei venti e delle temperature in quota lungo la rotta: carte a FL 390, a FL 340, a FL 300, a FL 240 a FL 180, a FL 100 e a FL 50.
- Carta del tempo significativo lungo la rotta (GND-FL 100, FL 100-250 e da FL 250 in su).

BIBLIOGRAFIA			
TITOLO	AUTORE	EDITORE	
Elementi di meteorologia	Willy Eichenberger	Meteo Mursia	
Meteorologia aeronautica	Giovanni Colella	IBN Editore	
Meteorologia aeronautica	Tonelli, Belli	Hoepli	
Manuale di Meteorologia	ENAV		
Meteorologia	Aeronautica Militare		